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PROPAGATION OF RAYLEIGH WAVES IN DISSIPATIVE MEDIA. LINE SOURCE

S. Z. Dunin and G. A. Maksimov UDC 550.344.43:550.344.56:550.347.34

Surface acoustic waves and, in particular, Rayleigh waves have attracted the attention
of researchers in a number of areas of science and technology, such as seismologists and
creators of microelectronic technology. This is due to the specific features of surface
waves. Thus, in seismological measurements of a wave field at large distances from the
source its most clearly recorded component is often the surface wave, due to the fact that
its damping is weaker than that of bulk waves. 1In microelectronics one uses the fact that
surface waves, possessing a low velocity in comparison with the propagation velocity of elec-
tromagnetic waves, as well as localization in the near-surface layer, make it possible to
create very compact electron devices. In both seismology and microelectronics it is impor-
tant to know how the wave profile and amplitude change with its propagation in the medium.
These variations may be a consequence of the dispersion-dissipative properties of the medium.
The necessity of keeping these properties in mind becomes clear if it is taken into account
that in seismology one deals with wave propagation at very large distances, while in micro-
electronics one uses very short pulses. This brings about the possibility of a strong effect
of dispersion-dissipative medium properties on the propagation of surface waves.

There exists a number of studies devoted to the study of the effect of nonideal medium
properties on propagation of Rayleigh waves [1-4]. For example, a relation was found in [2]
between small corrections to the wave vector of a monochromatic Rayleigh wave and similar
corrections to the wave vectors of longitudinal and transverse bulk waves. A numerical cal-
culation was carried out in [3] of the profile of a Rayleigh wave, excited by a shock near
the surface. The dispersion-dissipative properties of the medium were accounted for by a
linear frequency dependence of the imaginary part of the wave vectors of longitudinal and
transverse waves. It was noted in [4] that substantial difficulties arise in attempting to
account for the effect of dispersion-dissipative properties of the medium on the wave field
evolution in half-space by using the mathematical apparatus developed for an elastic medium.
A successive method of calculating the wave fields in dispersion-dissipative media was first

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3,
pp. 141-149, May-June, 1988. Original article submitted March 16, 1987.
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suggested in [1]. It makes it possible to avoid the difficulties mentioned, and provide the
answer to a number of practically interesting questions: under what conditions do the dis-
persion-dissipative properties of the medium affect substantially the propagation of a Ray-
leigh wave? How do its profile and amplitude vary in this case? What is the role of para-
meters of a nonmonochromatic source, such as its depth and radiation time, as well as medium
properties, such as dispersion and relaxation time?

Statement of the Problem and Basic Relations. In a homogeneous isotropic half-space,
filled by a linear inelastic medium with an equation of state of hereditary type of general
form '

t i
03 (r, ¥) = fM(t—— t') e (r, ¥')dt’ + aiij(t— ') eny (r, t') dt’, (1)
0 0

at a depth h parallel to the surface is located a line source, relating longitudinal waves
with a source function Qu(t). The surface S of the half-space is assumed free, i.e., ojjnj/
S =0 (n is the normal vector to the surface), while for t < 0 the half-space is in rest.
Equation (1), along with the equation of motion and the relation between the deformation
tensor €ij and the displacements uj in the linear approximation Po0%u;/0t* = 80;,/0xy, € = Ouyl
O0xy + Ouy/dx; , form a closed system for determining the displacement field in half-space.

Introduce the scalar A° and vector A potentials A? = y,rot A = w; (u = w; + w,)grad. For
the Laplace transforms in time A%r, p) and A(r, p) we obtain the system

[A—K(p)] 4@, p) = — Qu(p)8 e —R (D),
Ki(p) = poP®/12(M (p) + L (p))], (2)
[A— K3 (D]A@ p) =0, oy (4 A)n;[S=0,
A (r—>oc0, p)=A(r— o0, p) =0, Kj(p)=po0*/M (p).

Here the initial conditions are vanishing, and R(r) are the coordinates of the line source.
Denote by A% the solution of the system with Qu(p). We note that due to the homogeneity of
the boundary conditions in M(p) and L(p) the solution A} depends only on the parameters K,(p)
and K,(p): A%r, p) = A (r, Ki(p), Ky(p)). In the special case of an elastic wave, for which
K,(p) = p/cg, Ko(p) = p/cg (cq and cg are the velocities of longitudinal and shear waves),
the solution A% has the form Ay = AY(r, p/c;, p/c,). The solution of system (2) for Qu(p) =1
differs from AY by the factor Qu(p): A%r, p) = Q.(p)4s (v, Ky(p), Ka(p)), @« = 0, 1, 2, 3. The dis-
placement field can now be found by differentiation with respect to the spatial coordinates
u; = dAYdz, + e;;0AM0z5,u(r, p) = Qu.(p)G(r, Ki(p), Ks(p)) (G is the Green's function of the dis-
placement field). The space—time representation of the displacement wave field is given by

the Mellin integral

w8 =gy | apeP0u (1) B (r, Ky (), Kulo), v = (=105 + i)
v

If there exists proportionality between the mappings of the kernels M(p) and L(p), so that
K,(p)/K,(p) = const, this integral can be neglected, using the Efros theorem of generalized
convolution [1, 5]}:

1 oo
u(r, ) = | drQu() § a6, O 1t —1, c), .

vhere G(r, t)=%—igdpeP’G(r, —‘;—’—l, ci) is the space—time representation of the Green's function of
8
¥

the displacement field in an elastic medium, and

I(t, z)= z—in—ij‘dp exp {pt — zK, (p)} (4)
v

is a factor accounting for the dispersion-dissipative medium properties.

Ravleigh Waves in an Elastic Medium. For an elastic medium the Green's function of
the problem under consideration is well known [3, 6]. We are interested only in the surface
displacement. In this case the Green's function of the surface displacement G can be repre-
sented in the form
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G (2, b 1) = 51 [ apest L | aotos (s, 1, p). (5)
¥ —oo

Here
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Being interested only in that part of the surface displacement which is due to a Rayleigh
wave and determined by the roots of the dispersion equation D(pHﬁ,pHﬁ,kﬂ:=(L we take into
account that this equation has two roots: k = *ip/cyp (cg is the propagation velocity of the
Rayleigh wave, cg < cg). The contribution to (5) due to poles corresponding to these roots
leads to the following representation of the part of the surface displacement G® correspond-
ing to a Rayleigh wave:

13 h
GB(z, b, t)= A, -2 1 1 .
@Y ““( (—elef + 1 | (el L B2 ) (©)
where .
GR(z, b t)= 4,2 (L) (teien) ),
’ BN (—wleg + 8] (paleg) +h2 )
A—— LR AT2 4] o tckaf2lt 1)\
8n 2 DR | 2 2 T T et 2 pR ey c%—cﬁ ’
—— 2 2
nVEE (0l 5,
' % 4 AR V]

Expressions (6) are not causal, while at the same time the full wave field determining (5)

is causal and propagates with velocity cg. This fact is explained in [7], and is related

to the fact that in the region of distances R = vxZ + h? > cgt the contribution of Rayleigh
poles to the total displacement field is completely compensated by the contributions of other
singularities of the integrand expression in (5). To explain the causality of the expres-

sions we multiply them by the cutoff factor O( —(V 2? -+ h?/c), where 0(f) = {é’ Zzg’ This re-

5 -~ .
finement makes it possible to analyze simply the formation process of the Rayleigh wave.
In particular, the Rayleigh wave can be assumed to be formed if the following condition is
satisfied #/cp — mhy >(Vz¥ - h¥)/c,, implying that the interval between the wave front and its
center, moving with velocity cg is not less than m characteristic time scales h, of the wave.
This condition leads to the form

12 S
> [V m] )

2. 2
]/cl —c R

from which one obtains at m = 0 the well-known Nakano condition {3], which can be inter-
preted as the distance at which half of the Rayleigh wave is formed. This estimate is neces-
sary for restricting the region where the results obtained below are valid for the formation
of Rayleigh waves determined by expressions (6). Expressions (6) show that in an ideal elas-
tic medium the characteristic period of a Rayleigh wave is determined by the source depth h.
In particular, if the source is on the surface, i.e., h = 0, the vertical displacement compo-
nent is

GR(z,h =0, t)=nAz;,";(6(t—,é‘)+6(t+7zz}))’ (8)
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so that its period and formation length vanish. At distances exceeding the length of forma-
tion, Rayleigh waves moving from right to left are well separated, so that in the following
one may consider only the wave propagating from the right, determined by the expressions

h
LT T N A E—
. 0z (t— zje )+ n2 7Y
( r)" + Py %)
I —
GF (. h, 1) = Ay 2 — L R)

5z (t—zleg)* + 13"

Rayleigh Waves in a Dispersion-Dissipative Medium. Expression (3) related the Rayleigh
wave in an inelastic medium with the Rayleigh wave in an elastic medium in terms of its con-
volution with kernel I(t, x); therefore, it is required to know the explicit form of the
factor I(t, x). It is shown in the Appendix that it has the asymptotic representation

Lit,z)=1 ‘/i— exp {——f— (t— Fors )2},_ (10)

valid in the region of values x » cg,7, where cge is the sound velocity of transverse waves
in the dispersion-dissipative medium in the high-frequency limit w + «, and T is the charac-
teristic relaxation time of the medium.

Following substitution into (3) of expressions (9) and (10) it can be transformed to the

form
B e e e

Calculating the integral [8], we obtain

z B \2
pali A o (t—-~_u+i_l)
p ==Az}aix£21'l/’% (ci‘*'ihl)eXP[—cL S T
Gy x) $00 R (I/CB + lhl)

s00

, 7 z/cR+zh) (11)
*erfcf[z‘/ F E T (t— z l}ic.c.]

'z

(ferfc @)=1—erf(z) =1— —_l/——:jvdt exp (— tz)).

TR
If the condition x<<£—-[/t——ég-) 4——%] is satisfied, one can use the asymptotic representa-
800 R g

tion at large error of the probability integral erf(z) = 1—-i%§exp(——z3, leading to (9) ac-

curately within ])/y. Thus, when this condition is satisfied the factor I(t, x) is effec-

2 B2 )
tively a delta-function with respect to GF, If the condition x:»zjg[(t——gg-) 4--%J,is satis-
Cso0 | R g

fied, the function erfc(z) in (11) can be expanded for small values of the argument erf c(z)

_Z—I—
1/
for GE one also needs to account for the second term. Further, according to (7), neglecting
whenever possible h,cg in comparison with x, we find the final expression

We note that to calculate ég the first expansion term is sufficient, while

lA 2 }
AR — 2=
Ge| _mt 7ol Ve b o =y (12)
g;z 2 €y O IA _ic_”_"i ZC geg )
*Va f oot
from which it follows that at distances =z > gP,.cp/f the components of the vector G? have the
quite simple form:
T a4, 2m (= eyl Lm(y_ =¥
Vﬂl ]/ Az 3/2 (t geR) expl xcsm( gcR) ’ (13)

——_]/—Ax— (1—ﬁ(t ——‘—ﬂ exp {— I (t——-ﬁ—)z}.
T CSw gCRx g-zcsw gCR xcsw gCR
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Fig. 1 Fig. 2

The plots of the functions é§ and é§ are shown in Fig. 1 as a function of the parameter y =

1/

with velocity gecg. It also follows from (13) that the amplitude G* decays with distance
according to the law x~!, while its characteristic width increases proportionately to x'/Z.

¢ z g s . . .
i (t——~*—), corresponding to a transition to an associated coordinate system moving
xe

gc
S0 ®'R

An expression for the vertical component of é§ can be obtained more simply, taking into
h2
account that for z3» ;3-—%f the source can be considered as a surface source with the Green's
so0 & /
~ ) ¢ ¢
function (8), leading directly to the expression Gf==nA¢E;{I(t,xfE> +-1(t,—nrff)},whence
R R |

follows the representation (12), with account of (10), for the wave propagating to the right.

Asymptotic Velocities and Displacements in a Rayleigh Wave. The surface displacement
in a Rayleigh wave is expressed in terms of its Green's function G? according to (3), while
its velocity is expressed in the form

t "
VB, o) = [ arQ, ) GR @, t—1), (14)

where Qy(t) is the source function for the velocity: Q,@)==2%QM(Q. The line source function

Qu(t) is related to the displacement u(r,, t) = U F(t), assigned at the surface of the corre-
sponding cylindrical source of radius v, by the limiting transition vy » 0, Uy » =, r,Uy =
const, so that Qu(t) = 2wr U, F(t).

Consider the case often encountered practically, when Qy(t) has the shape of a single
"
gZ
in expression (14) can be placed outside the integral sign at the maximum point of the func-
tion Qu(t), which, for simplicity, we assume is equal to zero:

¢
pulse with characteristic radiation time T,. For x>>;lff(qu_ ), then, the function
8co

4
vi(z, ) =GR (z, 1) ) a'Qu (V). (15)

Expression (15) shows that in the region of large distances

cph
2 2
-V/cl—'gR

which with account of all restrictions used are determined by the dissipative medium proper-
ties and by source parameters such as the radiation time and the layer depth, while the pro-
file of the mass velocity in the Rayleigh wave has a universal structure for the given geom-
etry of the problem (see Fig. 1), independently of the specific shape of Q,{t). While the

amplitude of the velocity decreases with distance by the law x~!, the characteristic pulse

width equals vcgox/cRE. '
7]
We note that under the condition x » g?cgecgr/f the approximate relation holds 5;11L.@:2

—19 . . . . . '
j——grlft,x% using which, the expressions for the velocity and displacement are represented
(437

(4
exp {_ zfcR (t — {E—)z}
500 R

x> max

¢ h2
§ CoooT zf:f(Tﬁ + g—;)}, (16)

in the form {

R b ’
0 g {Qu<t)
v (z, 1) 0y (t)

.

0
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V2

gc
B-«:rrl‘/ R o | (17)

It follows from (17) that at large distances (16) the profiles of the displacement components
have the shape shown in Fig. 2, while their amplitude decays with distance according to the
law x~1/2, It also follows from (17) that if for Q, the characteristic time of signal growth

T, [it determines the width of Qy(t)] is small with respect to the radiation time T,, then
2

7%wT,__f(T§4-——>}<<I<<;Eng the veloc~
€50 s00

cph

R .
7 2
Vcl — R

ity and displacement components are given by the expression

in the region of intermediate distances nmx{

_x 1/2

(1,R gc . ‘ ¢ z \2
e =Y/ Eo0 sy, frenl i ()

VR T g

4, Fer (p_ =
uf (z, 1) - o erf{— =t gcﬂ):
R = nil — () .
Ux (‘27 t) €500 A Csw — exp{— _'LCE. t_i 2
VT[ ‘Tc.soo ( gcR)
Here Qy(t) gives only the amplitude, and therefore, in particular, the profiles of the veloc-

ity components have the shape shown in Fig. 2, while their amplitude decays according to
the law x~/2,

Estimates of the Region of Asymptotic Behavior of a Rayleigh Wave. Relationship (16)
determines the region of large distances satisfying the following conditions: the Rayleigh
wave can be assumed to be formed by (7); the dissipative factor I(t, x) has the shape (10)
(x » cg»>T); the profile of the Rayleigh wave under the action of dissipative medium proper-

2
ties undergoes the universal shape (15) (mj»fgﬂ-(T§+-f%)).
800 g
We provide several estimates, showing the role of various parameters of the source and
of the medium. In seismology one encounters sources with T, ~ 0.1 sec. Assuming that this
source exists in the medium at a moist carbonate loam, for which by the data of [9] (x ~ 107°
sec, cg ~ 0.26 km/sec, a = c3,/cie ~ 0.92), we find, using expression (A.6) for the general-
ized medium relaxation (a standard body), that f ~ 107 km/sec?. In this case condition (16)
reduces to x » 2-°10*h? + 2:102, where x and h are expressed in kilometers. It is seen that
the region of asymptotic behavior of the Rayleigh wave is determined at h > 100 m by the
source depth h, while for h < 100 m it is determined by the radiation time T,. In the latter
case the asymptotic behavior starts at x 2 200 km. In microelectronics LiNb0O, is widely used.
For it, from the data of [10] (t ~ 107!! sec is the thermal relaxation time, cg ~ 4 km/sec,
a ~ 0.94) and by Eq. (A.6) we find f ~ 10'3 km/sec. Hence, for a surface source with T, ~
5:10° sec the asymptotic behavior of a Rayleigh wave will be observed at distances x >> 0.4 mm,
which is comparable with the sizes of m1croe1ectron1c devices, and therefore must be accounted
for.

The examples provided show that for correct interpretation of the information trans-
ported by a nonmonochromatic Rayleigh wave in a dispersion-dissipative medium it is important
to know whether or not the Rayleigh wave tends to its asymptote, which is determined by the
source and medium parameters.

Thus, using an approach based on representing the solution in the form (3), when the
factors corresponding to the geometry of the problem and to the dispersion-dissipative prop-
erties of the medium, we manage to analyze consistently the propagation of a Rayleigh wave
in a nonideal medium and to answer the questions stated at the beginning of this paper.

Appendix: Properties of the Factor I(t, x). It follows from the representation (4) that
the properties of I(t, x) are determined by the shape of the dependence K,(p). We introduce
the notation Kj(p) = p,p*/M (p)= p*/»(p).

 All various dispersion-dissipative properties of geomedia, determined by the relaxation
kernel M(p) or x(p), can be described phenomenologically in terms of the spectrum of the
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exponential relaxation time. The general form of the relaxation kernel is in this case
% (1) = 36 (2) — Ajg(r) exp{— —i-}dr, (A.1)
0

where the first term corresponds to the elastic part of the relaxation kernel, and the second
corresponds to the inelastic part. The function g(t) is the relaxation time spectrum with

the properties: Sg(r)dr==1,gh);20, g(t = 0) = 0, the latter following from the fact that the
0

contribution of © = 0, corresponding to ideal elasticity, was already extracted:; A is a nor-
malization constant. The relaxation time spectrum can be found experimentally or by physical
considerations. It follows from (A.1) that

oo

x(p)=c_;—A§p—$}der. (A.2)
]

We note several properties of the mapping #(p), independent of the specific shape of the
spectrum g(t). It follows from the causality principle that K,(p) is an analytic function
in the region Rep 2 0, and it follows from (A.2) that %(p) increases monotonically for real
p > 0. This leads to the conclusion that I(t, x) = 0 for x > cut. We note that the factor
I(t, x) is essentially the Green's function of the one-dimensional planar problem for an un-
bounded dispersion-dissipative medium, so that one can talk about a perturbation propagation

rate. The minimum velocity is found from the expression cg = limx (p) = e — A S g (7) tdr.
p->0 s

For p + = we obtain the maximum possible perturbation propagation rate ck=lim%(p). Near

B—ro0
the front x = cet the structure of I(t, x) is determined by the expansion (for p = =) K,(p) =
p/cew + by — by /p +..., and is [11]
, . [ bz Nz
(¢, z) = exp {— bz} [6<t—— §> e L 2V b2 (t — 7/ew)) 8 (t — z/ew)], (A.3)
where I,(z) is the Bessel function of an imaginary argument. The expansion (for p =+ 0)
K,(p) = p/cy, — aop? +... determines the structure of I(t, x) near the point moving with

velocity cg: ey
_ Pl —Z co)
I, z)= l/ﬂ%x exp {— "—zﬁ—} (A.4)

It follows from (A.3) and (A.4) that near the front x = cot there is exponential damping with
distance of the elastic indicator, following which propagates part of the pulse, decaying
more weakly and described asymptotically by expression (A.4). To determine the behavior of
I(t, x) behind the front it was calculated by the steepest descent method for several spe-
cific relaxation time spectra g(t) [12]. Thus, g(1) = &(t — T,) corresponds to the general-
ized relaxation medium (a standard body). A Voight medium is obtained from the following
limiting transition 73— 0, cu — oo, 7,c%/c3 — 7. A Gurevich medium was also considered. For
the first two cases we showed uniqueness of the saddle point, while for a Gurevich medium a
similar result was obtained for real p. 1In all cases the saddle point is located on the real
axis, and the saddle contour passes perpendicularly to the latter. The validity of the
steepest descent method is determined by the condition z/(cwt) > 1 (7 is characteristic of

the selected relaxation time model). The same condition makes it possible to represent

I(t, x) in the form
I{t, x) =ll/—£—exp{——-—i—(t——g—f—)2}, - (A.5)

where I = 1/(2V 7), and the parameters f and g are the following:

for a Voight medium f = 2¢c,/t', g = 13

for generalized medium relaxation

Coo @d/2 o2
f=2';1m,g=a1/2,a=;é°—; (A.6)
. oo
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for a Gurevich medium

Coo 1

](=2771 (1-——Alna)1/2 g—(i—Alna)—lﬂ

Here A is the ratio of the shear elastic modulus to the relaxation one, and a' is the ratio
of minimum to maximum relaxation times.

Comparison of (A.5) and (A.4) shows that at distances X » coT the maximum of I(t, x)
is displaced with velocity c¢,, and is determined by the expansion of K,(p) near the point
p = 0. We note that for 1 + 0 there exists for the representation (A.5) a limiting transi-
tion to the case of an ideal elastic medium I(t, x) = 6(t — x/cs), since f ~ 1771,
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STUDY OF ELASTOPLASTIC DEFORMATION FOR CYLINDRICAL SHELLS WITH
AXTAL SHOCK LOADING

A. T. Abakumov, G. A. Kvaskov, UDC 620.178.7
S. A. Novikov, V. A. Sinitsyn,
and A. A. Uchaev

There is considerable practical interest in studying the dynamic stability of cylindrical
shells under the action of axial intense shock loads. A shell is assumed to be dynamically
stable if its movement is not accompanied by buckling, i.e., it is constrained. The nature
of loss of stability for a cylindrical shell is determined mainly by its relative thickness
h/R (h is shell thickness, R is central surface radius). For relatively thin shells with
h/R < 1/100 elastic buckling is normally considered when loss of stability occurs with for-
mation of rhombic hollows, and shell deflection as a result of sudden popping. With an
increase in relative shell thickness plastic buckling is observed during its axial compres-
sion. Plastic loss of stability is characterized by the fact that the shell may demonstrate
marked resistance to buckling. In the initial stage of deformation with plastic buckling
there is almost always axisymmetrical loss of stability in the form of an annular fold caused
by the effect of boundary conditions at the shell edges. With further axial compression the
shell continues to lose stability in axisymmetrical shape or it may change over to an asym-
metrical form of loss of stability. It was shown by experiment in [1] that the form of loss
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